Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Prediction of RPV lower structure failure and core material relocation behavior with MPS method (Contract research)

Yoshikawa, Shinji; Yamaji, Akifumi*

JAEA-Research 2021-006, 52 Pages, 2021/09

JAEA-Research-2021-006.pdf:3.89MB

In Fukushima Daiichi Nuclear Power Station (referred to as "FDNPS" hereafter) unit2 and unit3, failure of the reactor pressure vessel (RPV) and relocation of some core materials (CRD piping elements and upper tie plate, etc.) to the pedestal region have been confirmed. In boiling water reactors (BWRs), complicated core support structures and control rod drive mechanisms are installed in the RPV lower head and its upper and lower regions, so that the relocation behavior of core materials to pedestal region is expected to be also complicated. The Moving Particle Semi-implicit (MPS) method is expected to be effective in overviewing the relocation behavior of core materials in complicated RPV lower structure of BWRs, because of its Lagrangian nature in tracking complex interfaces. In this study, for the purpose of RPV ablation analysis of FDNPS unit2 and unit3, rigid body model, parallelization method and improved calculation time step control method were developed in FY 2019 and improvement of pressure boundary condition treatment, stabilization of rigid body model, and calculation cost reduction of debris bed melting simulation were achieved in FY2020. These improvements enabled sensitivity analyses of melting, relocation and re-distribution behavior of deposited solid debris in RPV lower head on various cases, within practical calculation cost. As a result of the analyses of FDNPS unit2 and unit3, it was revealed that aspect (particles/ingots) and distribution (degree of stratification) of solidified debris in lower plenum have a great impact on the elapsed time of the following debris reheat and partial melting and on molten pool formation process, further influencing RPV lower head failure behavior and fuel debris discharging behavior.

Journal Articles

Three-dimensional numerical study on pool stratification behavior in molten corium-concrete interaction (MCCI) with MPS method

Li, X.; Sato, Ikken; Yamaji, Akifumi*; Duan, G.*

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 8 Pages, 2018/07

Molten corium-concrete interaction (MCCI) is an important ex-vessel phenomenon that could happen during the late phase of a hypothetical severe accident in a light water reactor. In the present study, a three-dimensional (3-D) numerical study has been performed to simulate COMET-L3 test carried out by KIT with a stratified molten pool configuration of simulant materials with improved MPS method. The heat transfer between corium/crust/concrete was modeled with heat conduction between particles. Moreover, the potential influence of the siliceous aggregates was also investigated by setting up two different case studies since there was previous study indicating that siliceous aggregates in siliceous concrete might contribute to different axial and radial concrete ablation rates. The simulation results have indicated that metal melt as corium in MCCI can have completely different characteristics regarding concrete ablation pattern from that of oxidic corium, which needs to be taken into consideration when assessing the containment melt-through time in severe accident management.

2 (Records 1-2 displayed on this page)
  • 1